

Using PyPy

Two Ways of Using PyPy

● You can build a binary
– This gives you much less flexibility, and isn't

necessarily faster

– This is mostly useful for creating your own language
interpreter

● You can interpret your Python code
– This is what most people will want to do

– For pure Python, It's pretty much just a matter of
changing your #!

You Can Build a Binary

● This involves RPython
● I'm showing you this mostly to convince you that it's

normally not what you want
● Check out PyPy

– hg clone https://bitbucket.org/pypy/pypy src

● Goals
– cd src/pypy/translator/goal

– Select or create a goal, EG pypy or nop (hello world)

https://bitbucket.org/pypy/pypy

Goals

● Building a PyPy binary from the RPython code:

– python translate.py --opt=jit targetpypystandalone.py

● Building a Hello World from the RPython code:

– python translate.py targetnopstandalone.py

– Gives a 171K hello world (targetnopstandalone-c) program

● I briefly tried creating a targetsievestandalone.py, but it
(RPython) disliked my use of generators, so I moved on

What “nop” looks like

● def debug(msg):

● print "debug:", msg

●

● # __________ Entry point __________

●

● def entry_point(argv):

● debug("hello world")

● return 0

●

● # _____ Define and setup target ___

●

● def target(*args):

● return entry_point, None

You Can Interpret Your Python Code

● This involves full-fledged Python 2.7; no RPython
required.

● For most pure Python code just change the #! line to
PyPy (*ix)

● Running sieve for primes below 250,000,000 on a 32
bit Linux Mint 14 system:

Interpreter Duration (low is good)

Pypy 1.9 3m30.553s

Jython 2.5.3 Memory error

CPython 2.5.6 12m33.746s

CPython 2.7.2 12m58.738s

CPython 3.0.1 16m31.780s

CPython 3.3.0 14m22.298s

The PyPy project's idea of their own
speed

But I really want to use RPython

● Some reasons not to:
– Generators get less flexible

– If you change one module, you have to rebuild
your whole project, which can take a while for
large projects

– Implicitly statically typed data

– You get the speed benefit even without using
RPython

What Are PyPy (RPython) Build
Times?

Goal Time

PyPy 145m34.050s

nop 0m27.181s

Barriers to use of PyPy

● C Extension Modules are the single biggest barrier.
– It usually works best to rewrite your C Extension Modules

as Pure Python for PyPy's benefit, so the PyPy JIT can
optimize them. You can also preprocess Cython!

– PyPy 1.9/PyPy 2.0 Beta 1 (current at the time of this
writing) and below have Beta support for C extension
modules, but they tend to be slow

– You can write fast C interfacing code using ctypes or cffi

For More Information

● http://doc.pypy.org/en/latest/faq.html
● http://morepypy.blogspot.com/2011/04/tutorial-

writing-interpreter-with-pypy.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

