

Writing Code to run on Python 2.x and 3.x

A Decision

● Do you want to run on 2.5? 2.6? 2.7?
● Do you need 3.0? 3.1? 3.2? 3.3? 3.4? 3.5?

● Pypy 4.0.1 is pretty much 2.7
● Pypy3 2.4.0 is pretty much 3.2
● Jython 2.7.0 is pretty much 2.7

What's the difference?

● 2.5 is pretty ignorant of 3.x
● 2.6 and 2.7 were created to ease the transition to

3.x
● 3.x has some of 2.x' oddities cleaned up

● CPython is Python in C, AKA “Python”
● Pypy is Python in Python with a JIT: very fast
● Jython is Python in Java: interop with java libraries

Approaches

● 2to3
● 3to2
● Run on both - we'll mostly talk about this

2to3 vs 3to2

● 2to3: converting code automatically from 2.x to
3.x

● 3to2: converting code automatically from 3.x to
2.x

● 3to2 is the more complete conversion because
of strings

These are the main things we'll
discuss about running on both

● Automated tests
● Tox
● Six
● Print: statement vs function
● Strings: bytes and unicode
● Try/Except
● String formatting
● Imports
● Division
● Range

Automated tests

● Always useful
● Especially useful when making changes like

this

Tox

● Test code under multiple interpreters
● this-interpreter

Six (and python2x3)

● Looks very useful
● I've not used it, but I started a similar project:

python23
● Byte strings
● I recommend you use Six instead of

python2x3

Print

● 2.x: print 'abc'
● 3.x: print('abc')
● With a single argument, the difference vanishes
● 2.x: print('ab%s' % 'c')
● 3.x: print('ab%s' % 'c')
● 2.6 and up: from __future__ import print_function

Strings: Bytes

● In 2.5, byte strings are just str
● In 2.6 and 2.7, the b”prefix” is bytes, but

they're really just str
● In 3.0 - 3.5, the b”prefix” is bytes, and they act

like an array of small integers

Strings: Unicode

● In 2.4-2.7 (and likely earlier) the u'prefix' is for
unicode

● In 3.0-3.2, the u'prefix' gives an error and
unprefixed strings are unicode

● In 3.3, 3.4 and 3.5, the u'prefix' works again,
and is just like an unprefixed, unicode string.
Also unprefixed strings are unicode

Bytes, strings and I/O

● 2.x: os.read(os.open(), len) and open().read()
both return str

● 3.x:
– os.read(os.open(), len) returns bytes

– open().read() returns unicode

● bufsock

Bytes and Unicode and your
decision

● These are among the main determiners of
what Python versions you should support

Try/Except: 2.4 and up (perhaps
earlier)

● try:
● print(1/0)
● except ZeroDivisionError, extra:
● print('oops')

● This trips some very good programmers

Try/Except: 2.6 and up

● try:
● print(1/0)
● except ZeroDivisionError as extra:
● print('oops')

Try/Except: both 2.4-2.7 (perhaps
earlier) and 3.x

● try:
● print(1/0)
● except ZeroDivisionError:
● extra = sys.exc_info()[1]
● print('oops')
● # I'm told this is slow on Pypy

String Formatting

● 2.7 & 3.0-3.5:

print("abc{}ghi".format("def"))
● 2.4-2.7 (and much earlier), 3.0-3.5:

print('abc%sghi' % 'def')
● “'F' strings”

● Warning: % string operator was nearly removed
from 3.x, but it's likely here to stay

Imports

● try:
● # python 2
● from cStringIO import StringIO
● except ImportError:
● # python 3
● from io import BytesIO as StringIO

Division

● 2.x: 1 / 2 is 0
● 3.x: 1 / 2 is 0.5

● print(int(1/2))
● print(float(1)/2)

● 2.2 and up: from __future__ import division

range vs xrange

● In 2.x, range is always a list, and xrange is an
iterator

● In 3.x, range is always an iterator, and xrange
doesn't exist

● In 3.x, if you need a list, you can use list(range(5))
● The author sometimes defines a “my_range” to

get consistent semantics, with just a for loop and a
yield

Questions?

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

