Writing Code to run on Python 2.x and 3.x



A Decision

DO you want to run on 2.5? 2.67? 2.77
DO you heed 3.0? 3.1? 3.27 3.3? 3.4? 3.5?

Pypy 4.0.1 Is pretty much 2.7

Pypy3 2.4.0 Is pretty much 3.2
Jython 2.7.0 Is pretty much 2.7



What's the difference?

2.5 Is pretty ignorant of 3.x

2.6 and 2.7 were created to ease the transition to
3.X

3.X has some of 2.x' oddities cleaned up

CPython is Python in C, AKA “Python”
Pypy Is Python in Python with a JIT: very fast
Jython is Python in Java: interop with java libraries



Approaches

e 2t03
e 3t02
 Run on both - we'll mostly talk about this



2t03 vs 3to2

e 2t03: converting code automatically from 2.x to
3.X

» 3to2: converting code automatically from 3.x to
2.X

e 3t02 Is the more complete conversion because
of strings



These are the main things we'll
discuss about running on both

 Automated tests

e TOX
e SIX

 Print: statement vs function
 Strings: bytes and unicode
* Try/Except

 String formatting

e [mports

e Division

 Range



Automated tests

» Always useful

» Especially useful when making changes like
this



Tox

* Test code under multiple interpreters

* this-interpreter



Six (and python2x3)

* Looks very useful

 |'ve not used Iit, but | started a similar project:
python23

* Byte strings

* | recommend you use Six instead of
python2x3



Print

2.X. print 'abc’

3.X: print(‘abc’)

With a single argument, the difference vanishes
2.X: print(‘ab%s' % 'c')

3.X: print(‘fab%s' % 'c')

2.6 and up: from __ future__ import print_function



Strings: Bytes

* In 2.5, byte strings are just str

* In 2.6 and 2.7, the b"prefix” is bytes, but
they're really just str

* In 3.0 - 3.5, the b"prefix” is bytes, and they act
like an array of small integers



Strings: Unicode

* In 2.4-2.7 (and likely earlier) the u'prefix' is for
unicode

* In 3.0-3.2, the u'prefix' gives an error and
unprefixed strings are unicode

* In 3.3, 3.4 and 3.5, the u'prefix' works again,
and Is just like an unprefixed, unicode string.
Also unprefixed strings are unicode



Bytes, strings and |/O

» 2.X: 0s.read(os.open(), len) and open().read()
both return str

e 3.X:

- 0s.read(os.open(), len) returns bytes
- open().read() returns unicode

e bufsock



Bytes and Unicode and your
decision

* These are among the main determiners of
what Python versions you should support



Try/Except: 2.4 and up (perhaps
earlier)

try:
print(1/0)

except ZeroDivisionError, extra:
print(‘oops’)

This trips some very good programmers



Try/Except: 2.6 and up

try:
print(1/0)

except ZeroDivisionError as extra:
print(‘oops’)



Try/Except: both 2.4-2.7 (perhaps
earlier) and 3.x
try:
print(1/0)
except ZeroDivisionError:
extra = sys.exc_info()[1]
print(‘'oops’)
# I'm told this is slow on Pypy



String Formatting

o 2.7 & 3.0-3.5:
print("abc{}ghi".format("def"))

e 2.4-2.7 (and much eatrlier), 3.0-3.5:
print(‘abc%sghi' % 'def')

o “F' strings”

» Warning: % string operator was nearly removed
from 3.x, but it's likely here to stay



Imports

o try:

# python 2
from cStringlO import StringlO
except ImportError:

# python 3
from 10 import ByteslO as StringlO



Division

2X:1/21s0
3.x:1/21s0.5

orint(int(1/2))
orint(float(1)/2)

2.2 and up: from __ future__ import division



range vs Xrange

* In 2.X, range Is always a list, and xrange is an
iterator

* |n 3.X, range Is always an iterator, and xrange
doesn't exist

* In 3., If you need a list, you can use list(range(5))

* The author sometimes defines a “my_range” to
get consistent semantics, with just a for loop and a

yield



Questions?

Questions?



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

