#!/usr/local/cpython-3.3/bin/python

"""Run some performance tests on a variety of sorting algorithms."""

# import os
import sys
import time
import random
# import functools

import funnelsort_py as funnelsort
# import funnelsort as funnelsort

import quicksort_py as quicksort
# import quicksort as quicksort

import insertionsort_py as insertionsort
# import insertionsort as insertionsort

import binarysort_py as binarysort
# import binarysort as binarysort

import bubblesort_py as bubblesort
# import bubblesort as bubblesort

import shellsort_py as shellsort
# import shellsort as shellsort

import mergesort_py as mergesort
# import mergesort as mergesort

import timsort_reimp_py as timsort_reimp
# import timsort_reimp as timsort_reimp

import radixsort_py as radixsort
# import radixsort as radixsort

sys.setrecursionlimit(100000)

ORIGINAL = None


def comparison_function(left, right):
    """Compare left and right."""
    if left < right:
        return -1
    elif left > right:
        return 1
    else:
        return 0


class Test(object):
    # pylint: disable=R0903
    # R0903: We're a container; we don't need a lot of public methods
    """Hold information about an individual test."""

    def __init__(self, kind, generate, proportion):
        """Initialize."""
        self.kind = kind
        self.generate = generate
        self.proportion = proportion


class Slow_comparisons(object):
    # pylint: disable=R0903
    # R0903: We don't need a lot of public methods
    """Perform a comparison, and make it artificially expensive by sleeping a tiny bit on each one."""

    def __init__(self, value):
        """Initialize."""
        self.value = value

    def __cmp__(self, other):
        """Compare the Python 2.x way."""
        time.sleep(0.0000003)
        # print type(self), type(other)
        # sys.stdout.flush()
        return comparison_function(self.value, other.value)


def slow_generate(count):
    """Produce a list of objects with artificially expensive comparisons."""
    return [Slow_comparisons(x) for x in range(count)]


def brief_generate(count):
    """Return a brief list with numbers 0..count-1."""
    return list(range(count))


def append(filename, size, duration):
    """Append a statistic to a file."""
    with open(filename, 'a') as file_:
        file_.write('%d %f\n' % (size, duration))


def shuffle(lst):
    """Rearrange a (possibly sorted) list into random order."""
    # This is how I was taught to do it in school, but https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle
    # len_lst = len(lst)
    # for index in range(len_lst):
    #     random_index = int(random.random() * len_lst)
    #     lst[index], lst[random_index] = lst[random_index], lst[index]
    random.shuffle(lst)


def is_sorted(test_list, original_list):
    """Return True if a list is sorted, by comparing it to the original list."""
    if test_list == original_list:
        return True
    else:
        return False


def radixsort_cython_fn(list_):
    """Radix sort consistency wrapper."""
    radixsort.radix_sort(list_)


def timsort_cext_fn(list_):
    """Build-in timsort consistency wrapper."""
    list_.sort()


def timsort_cython_fn(list_):
    """Timsort reimplementation consistency wrapper."""
    timsort_reimp.timsort(list_)


def mergesort_cython_fn(list_):
    """Mergesort consistency wrapper."""
    mergesort.mergesort(list_)


def funnelsort_cython_fn(list_):
    """Funnelsort consistency wrapper."""
    funnelsort.funnelsort(list_)


# def stable_quicksort_cython_fn(list_):
#     """Stable quicksort consistency wrapper."""
#     quicksort.quicksort(list_, stable=True)


def quicksort_cython_fn(list_):
    """Unstable quicksort consistency wrapper."""
    quicksort.quicksort(list_)


def shellsort_cython_fn(list_):
    """Shellsort consistency wrapper."""
    shellsort.shellsort(list_)


def insertionsort_cython_fn(list_):
    """Sort with Insertion Sort - consistency wrapper."""
    insertionsort.insertionsort(list_, 0, len(list_) - 1)


def binarysort_cython_fn(list_):
    """Sort with Binary Sort - consistency wrapper."""
    binarysort.binarysort(list_, 0, len(list_) - 1)


def bubblesort_cython_fn(list_):
    """Bubblesort consistency wrapper."""
    bubblesort.bubblesort(list_, 0, len(list_) - 1)


def cheat_o_of_n_fn(list_):
    """Just do something linear (O(n)) for the sake of comparison."""
    list_[:] = ORIGINAL
    for dummy in ORIGINAL:
        dummy *= 2


def main():
    # pylint: disable=W0603
    # W0603: We kinda want a global here, so we don't have to change a bunch of function signatures
    """Compare sorts via a graph - or rather, produce raw data for graphing."""
    global ORIGINAL

    tests = [ \
        # Test('slow', slow_generate, 1), \
        Test('brief', brief_generate, 2), \
        ]

    for test in tests:
        maximum_exponent = 26

        for exponent in range(maximum_exponent):
            size = 2**exponent

#                ('stable_quicksort_cython', stable_quicksort_cython_fn,  maximum_exponent), \
            tuples = [
                ('bubblesort',       bubblesort_cython_fn,        maximum_exponent * 9 // 16),
                ('insertionsort',    insertionsort_cython_fn,     maximum_exponent * 10 // 16),
                ('binarysort',       binarysort_cython_fn,        maximum_exponent * 10 // 16),
                ('shellsort',        shellsort_cython_fn,         maximum_exponent),
                ('quicksort',        quicksort_cython_fn,         maximum_exponent),
                ('funnelsort',       funnelsort_cython_fn,        maximum_exponent),
                ('mergesort',        mergesort_cython_fn,         maximum_exponent),
                ('timsort_cext',     timsort_cext_fn,             maximum_exponent),
                ('timsort',          timsort_cython_fn,           maximum_exponent),
                ('radixsort',        radixsort_cython_fn,         maximum_exponent),
                ('cheat_O(n)',       cheat_o_of_n_fn,             maximum_exponent),
                ]

            for algorithm_description, algorithm_code, max_exponent in tuples:
                algorithm_description = '%s_%s' % (test.kind, algorithm_description)
                if exponent > max_exponent:
                    continue
                sys.stdout.write('%30s 2**%0d ' % (algorithm_description, exponent))
                sys.stdout.write('ge')
                sys.stdout.flush()
                ints = test.generate(size)
                # for x in range(size):
                #     ints.append(Slow_comparisons(x))
                # print 'size is,', size, 'ints is', ints
                sys.stdout.write('t ')
                sys.stdout.write('shuff')
                sys.stdout.flush()
                shuffle(ints)
                sys.stdout.write('le ')
                sys.stdout.flush()

                sys.stdout.write('so')
                sys.stdout.flush()
                ORIGINAL = test.generate(size)
                time0 = time.time()
                algorithm_code(ints)
                time1 = time.time()
                diff_time = time1 - time0
                if is_sorted(ints, test.generate(size)):
                    print('rt %s' % diff_time)
                else:
                    print('rt %s failed' % diff_time)
                    print('%s %s' % (ints, test.generate(size)))
                    sys.exit(1)
                append('%s.dat' % algorithm_description, size, diff_time)


main()